Department: Chemistry

Our Curriculum Aims:

Chemistry is THE central Scientific discipline. At AGSB, our aim is that students enjoy their study of Chemistry as only by this measure can we hope to: -

Inspire students with a sense of curiosity and wonder about the fundamental nature of the world around them by presenting ideas and concepts in an interesting and entertaining manner.

We have developed our curriculum around four key themes - Working Scientifically

Atomic Structure

Atmosphere/Sustainability

Numeracy

We then develop a teaching order that allows knowledge to build as we move through KS3 \rightarrow GCSE \rightarrow A level.

This allows to develop a series of pillars on which to hang more detailed knowledge

Empower students to make decisions about their own lives and critically evaluate scientific and technological developments that impact society by providing the skills needed to function in a fast-changing world.

Key Stage Three Curriculum Overview

Year	Name of	Key Content of the Topic	Assessment
9	topic		points
HT 1	Acids, alkalis, salts and precipitates General chemical	Students learn techniques that develop accuracy and precision. They extend their use of word and symbol equations.	
HT 2	techniques, eg thermal	Knowledge of acids is applied to environmental issues such as acid rain. Students are given a topic on reaction rate that allows the teaching of planning, risk assessment and which develops the skills needed to properly analyse and evaluate practical work.	End of term exam
HT 3	Study of foundation Chemistry. The Periodic Table.	In January of Y9 we begin the GCSE course as we have finished the relevant Key Stage 3 requirements. In this term we study Unit 1 of the AQA Separate Chemistry GCSE. This allows us to review and extend the work originally done in Y7 and Y8. Being a selective school, our students cope well with the KS3 content, and we get through it quite fast. There is no point marking time when we can use the extra time generated in Y10 and 11 to extend practical tasks to include and develop analytical and evaluation skills	
HT 4		Throughout Year 9 teaching, we ensure that the content covered is common to both the Separate and 'Dual Award' science GCSE courses	

HT 5	The Periodic Table; its development and use.	We finish the study of unit 1 before the Y9 exam. Following feedback from the exam, we teach Unit 9 on the 'Chemistry of the Atmosphere'.	Trial Exam
HT 6	Atmosphere	Should any time allow, teachers will focus on practical skills to interest and extend knowledge.	Assessment of GCSE topics covered so far.

GCSE Course Followed: Chemistry

Specification: AQA (Syllabus code 8462)

Why Choose GCSE

All students will study:

Atomic Structure and Periodic Table

Bonding, Structure and the Properties of Matter

Quantitative Chemistry

Chemical Changes

Energy Changes

The Rate and Extent of Chemical Change

Organic Chemistry

Chemical Analysis

Chemistry of the Atmosphere

Using Resources

Separate Chemistry students study the same or similar areas of study, but most topics will be explored in greater detail.

Key Stage Four Curriculum Overview

Year 10

	Name of topic	Key Content of the Topic	Assessment points
HT 1	lonic compounds and bonding	Following revision of unit 1, we teach the ionic bonding content of unit 2. We also teach Electrolysis that is found later in the syllabus to give some practical and investigative work.	
HT 2	Electrolysis, covalent compounds and bonding and metals	Following completion of electrolysis topic, we look at covalent compounds and giant covalent lattices. The study of metals involves structure, reactivity, extraction and alloying. Teachers also consider environmental issues.	End of term assessment prior to Christmas grades
HT 3	Analysis and energy	In this term we are aiming to complete units 8 and 5. Details in syllabus.	
HT 4	Energy and Y10 Revision	Finish this terms content and move onto revision for the Y10 exams at the end of term.	
HT 5	Reaction rate	Factors affecting the rate of reactions	Trial Exam

HT 6	Equilibrium	Study of reversible reactions	End of year
	The Haber	Industrial application of equilibrium	assessment
	Process		
	Environmental	It's a big topic with ample opportunity for students to revise	
	impact and Life unit 9 and consider wider environmental issues associated		
	cycle analysis	with combustion, production and disposal of materials.	

Year 11

	Name of topic	Key Content of the Topic	Assessment points
HT 1	Organic Chemistry	Study of carbon compounds	
HT 2	The mole	Calculations based around relative Mass	Y11 mock
HT 3	The Mole Acids	Finish Calculations and then a topic on acids. This is then all tied together by studying titrations	
HT 4	Tidy up	Staff use these last weeks to link ideas across the syllabus and tidy up any loose ends that are not covered within the larger topics such as water, fertilisers and others	
HT 5	Finish tidy up and revision	A good deal of time is spent going over exam technique, past papers and the skills necessary to reach their potential.	
HT 6	NA	Staff are always available to give Chemistry help and support.	GCSE exams

Recommended Revision Guides for GCSE

Pupils have access to the online textbook through Kerboodle. We now sell CGP revision guides for AQA chemistry at £2.80 via Parentpay. We buy in bulk and pass the savings onto you.

Also, do not forget to check the resources available in the STU Chemistry folder on Office 365 or to download a copy of the AQA Chemistry specification.

Support available for GCSE Students

Staff are available to help between 8.00 and 16.30.

KeyStage 5 – A Level Chemistry

A Level Course followed - AQA Chemistry (7405)

Why choose Chemistry?

Chemistry is second only to Maths as a student choice at A level. A small majority of students have ambitions to study a university course associated with healthcare, but many others choose because they have enjoyed their studies at GCSE.

The course begins with about 12 weeks study of Foundation Chemistry topics that are used throughout the course. After that we have chosen a teaching order that hopefully allows a good balance between theory and practical. We have also decided to interleave topics from the Physical, Organic and Inorganic strands of the syllabus.

Y12 TEACHING ORDER WITH REQ'D PRACTICALS

Topic	Likely Time Scale	Practical opportunities
Atomic Structure	3 weeks	
Fundamental Particles		
Mass number/Isotopes		
Electron Config		
Amount of Substance	5 weeks (could be 6 depending on	Make standard solution
Mr and Ar	practical work)	Titration(s)
Ideal Gas equation		Find conc of unknown acid
Moles of solids and solutions		Find Mr of unknown bicarbonate
Empirical/Molecular formula		et., etc
Balanced Eqns and associated calcs		Req'd practical 1
Bonding	4 weeks	Carry on doing titrations to
Ionic bonding		minimise the grind and break up
Covalent and Dative bonding		the theory
Metallic bonding		
Bonding & physical properties		
Bond polarity		End of Half term assessment
Shapes of molecules		
Intermolecular forces		
Energetics	3 weeks	Enthalpy of neut practicals
Enthalpy change		Enthalpy of CuSO4/Fe filings
Calorimetry		Required Practical 2
Hess's Law and associated calcs		
Bond enthalpies		
Kinetics	2 weeks	Disappearing cross
Collision Theory		Acid/carbonate (we have a LOT of
Maxwell Boltzmann Curves		marble chips)
Temp and rate		Required Practical 3
Conc/Pressure and rate		
Catalysts and rate		End of term assessment

Topic	Likely Time scale	Practical opportunities
Chemical equilibria and Le Chatelier Chemical equilibria and Le Chatelier Equilibrium constant Kc	2 weeks	There is an expt. To determine Kc for an esterification reaction. This adds to likely teaching time.
Organic Chemistry		
Introduction to Organic Chemistry Nomenclature Isomerism	2 weeks	

Alkanes Fract Dist of Crude Oil Cracking Combustion Chlorination (with mech)	2 weeks	You could demo this with our 'crude oil'. You might wish to use Quick Fit to separate a water fluorescein mix
Halo Alkanes Nuc Subs mech Elimination with mech Ozone depletion	1.5 weeks	Relative rates of hydrolysis of haloalkanes
Alkenes Structure bonding and reactivity Addition reactions with mech. Addition Polymers	1.5 weeks	Use of bromine water to identify
		End of half term assessment
Alcohols Production Oxidation of alcohols Elimination	1.5 weeks	Required Practical 5b
Organic analysis Identification of functional groups by test tube reactions Mass Spec IR Spec	1.5 weeks	Required prac 6
Redox Oxidation/Reduction half equations	1.5 weeks	Feel free to do some redox titrations if time allows
Group 7 Oxidising power Reducing power Displacement Tests for halides	2.5 weeks	Required Prac 4
Chlorine Chemistry Reactions with NaOH Reactions with water	0.6 weeks	
Y12 Exam		

Electrode Potentials and Cells	4 weeks	Required Prac 8
Electrode Potentials		
Electrochemical cells		
Commercial applications of		
electrochemical cells		

Thermodynamics Born-Haber cycles Gibbs Free energy	3 weeks	
Year 1 Revision	I would use any remaining time to consolidate areas of the Y1 course that were highlighted as weakness in the Y12 exam.	Easter End of Y12 assessment

Y13 TEACHING ORDER

Торіс	LIKELY TIME SCALE	Opportunity for Practical
Transition metals General Properties Substitution reactions Complex shapes Formation of coloured ions Variable oxidation states CATALYSTS	3.0 WEEKS	REQUIRED PRACTICAL 11
Ions in aqueous Solution	2.0 WEEKS WITH PRACTICAL	
ORGANIC REVISION	1.0 WEEK	END OF HALF TERM ASSESSMENT
OPTICAL ISOMERISM	0.2 WEEKS	
HALF	TERM	WEEK
ALDEHYDES AND KETONES	1.0 WEEK	
CARBOXYLIC ACIDS AND DERIVATIVES	1.8 weeks due to Practical	Esterification MAKING BIODIESEL Required Practical 5b Making an ester
Acylation	1.0 week due to Practical	Required Practical 10 Making and purifying an organic solid MAKING ASPIRIN
Aromatic Chemistry ELECTROPHILIC SUBSTITUTION	0.8 WEEKS	

Amines	1.0 WEEK	
Preparation	1.0 WEEK	
Base Properties		
Nucleophilic properties		
Polymers	0.6 WEEKS	
Condensation	O.O WEEKS	
Biodegradability/disposal		
Amino acids	0.8 WEEKS	
Proteins	O.O WEEKS	
Enzymes		
DNA		
Action of anti-cancer drugs		
Christmas	HOLIDAY	
Hydrogen-1 NMR	1 / WEEK	Required Practical 12
Carbon-13 NMR	1.6 WEEKS	TLC
Chromatography		ILC
Organic Synthesis	0.6 WEEKS	
	U.O WEEKS	
Properties of group 3 metals and their oxides	0.6 WEEKS	
Rate Equations	3.0 WEEKS WITH PRACTICALS	Required Practical 7a and b.
Include order of reaction, rate	3.5 WEERS WITH INTERIORES	Measuring reaction rate by
equation and Arrhenius equation		Initial rate method
Plot graphs and determine gradient		Continuous monitoring method
Determination of a rate equation		
Revise	For Y13	Mock exam
Kp – Mole Fractions	1.5 WEEKS	May wish to do esterification
Partial pressures	1.5 WEEKS	practical to determine Kc if
Kp expression and units		you've not already done this.
Effects of catalyst on Kp		,
Calculations		
Acids	1.4 WEEKS	
Bronsted Lowry acids and bases		
pH of strong acids		
Kw		
pH of strong bases		
pH of strong acid base mixtures		Demoised Described O
Titration curves Indicators	0.6 WEEKS	Required Practical 9
mulcators		Using a pH meter to plot a
		titration curve.
Ka	1.0 Weeks	
pH of weak acids		
pH of weak acid/strong base mixtures		
Buffers	1.5 weeks	
Theory		
Calculations		
Revision	For	A level